Midterm 1 - Review - Problems

Peyam Ryan Tabrizian

Thursday, September 26th, 2013

1 Epsilon-Delta

Problem 1

Use an $\epsilon\text{-}\delta$ argument to show:

 $\lim_{x \to 5} 2x + 3 = 13$

2 Limits

Problem 2

Find the following limits

(a)
$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9}$$

(b) $\lim_{x \to 2} \frac{x^2 - x - 6}{2}$

$$(5) \quad \min_{x \to 2} \quad x-2$$

- (b) $\lim_{x \to 3^{-}} \frac{\ln(x)}{x-3}$
- (c) $\lim_{x\to 0^+} \frac{(\ln(x))^2 + 1}{(\ln(x))^2 + 3}$
- (d) $\lim_{x\to 0} \sin\left(\frac{\pi|x|}{x}\right)$
- (e) $\lim_{x \to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$
- (g) $\lim_{x\to 0} \frac{\cot(2x)}{x}$
- (h) $\lim_{x \to -\infty} \frac{\sqrt{x^4+1}}{x^2}$

3 Continuity and the IVT

Problem 3

Is the following function f continuous at 0?

$$f(x) = \begin{cases} x^2 & \text{if } x \le 0\\ x \sin\left(\frac{1}{x}\right) & \text{if } x > 0 \end{cases}$$

Problem 4

Show that $x^4 - x = 3$ has at least one solution

4 Differentiability

Problem 5

Is the following function f differentiable at x = 1?

$$f(x) = \begin{cases} 2x - 1 & \text{if } x < 1\\ x^2 & \text{if } x \ge 1 \end{cases}$$

Problem 6

Is the following function f differentiable at x = 0?

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Problem 7

Give an example of a function which is continuous at 0, but not differentiable at 0.

5 Derivatives

Problem 8

Find the derivatives of the following functions, using the **definition** of the derivative:

(a)
$$f(x) = \frac{1}{x^2}$$

(b) $f(x) = \sqrt{1+3x}$

Problem 9

Show that there is no tangent line to the curve $y = x^2$ that goes through (2, 16)

6 Inverse-Trig Stuff

Problem 10

Let $f(x) = \cos^{-1}(e^x)$

- (a) Find the domain of f
- (b) Find the domain of f^{-1}
- (c) Show that f is one-to-one
- (d) Find a formula for $f^{-1}(x)$